
with Open Texts

LINEAR
ALGEBRA

with Applications

Open Edition
Adapted for

Emory University

Math 221
Linear Algebra

Sections 1 & 2

Lectured and adapted by

Le Chen
April 15, 2021

le.chen@emory.edu

Course page
http://math.emory.edu/~lchen41/teaching/2021_Spring_Math221

ADAPTABLE | ACCESSIBLE | AFFORDABLE

by W. Keith Nicholson
Creative Commons License (CC BY-NC-SA)

le.chen@emory.edu
http://math.emory.edu/~lchen41/teaching/2021_Spring_Math221




Contents

1 Systems of Linear Equations 5
1.1 Solutions and Elementary Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Homogeneous Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Supplementary Exercises for Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 Matrix Algebra 39
2.1 Matrix Addition, Scalar Multiplication, and Transposition . . . . . . . . . . . . . . 40
2.2 Matrix-Vector Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.4 Matrix Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
2.5 Elementary Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2.6 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
2.7 LU-Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3 Determinants and Diagonalization 147
3.1 The Cofactor Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.2 Determinants and Matrix Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.3 Diagonalization and Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Supplementary Exercises for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

4 Vector Geometry 203
4.1 Vectors and Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
4.2 Projections and Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
4.3 More on the Cross Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
4.4 Linear Operators on R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Supplementary Exercises for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

5 Vector Space Rn 263
5.1 Subspaces and Spanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
5.2 Independence and Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
5.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
5.4 Rank of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

3



4 CONTENTS

5.5 Similarity and Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Supplementary Exercises for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

6 Vector Spaces 321
6.1 Examples and Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
6.2 Subspaces and Spanning Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
6.3 Linear Independence and Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . 342
6.4 Finite Dimensional Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Supplementary Exercises for Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

7 Linear Transformations 365
7.1 Examples and Elementary Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 366
7.2 Kernel and Image of a Linear Transformation . . . . . . . . . . . . . . . . . . . . . 374
7.3 Isomorphisms and Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

8 Orthogonality 399
8.1 Orthogonal Complements and Projections . . . . . . . . . . . . . . . . . . . . . . . 400
8.2 Orthogonal Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
8.3 Positive Definite Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
8.4 QR-Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
8.5 Computing Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
8.6 The Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

8.6.1 Singular Value Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . 436
8.6.2 Fundamental Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
8.6.3 The Polar Decomposition of a Real Square Matrix . . . . . . . . . . . . . . . 445
8.6.4 The Pseudoinverse of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 447



5.4. Rank of a Matrix 297

5.4 Rank of a Matrix

In this section we use the concept of dimension to clarify the definition of the rank of a matrix given
in Section 1.2, and to study its properties. This requires that we deal with rows and columns in the
same way. While it has been our custom to write the n-tuples in Rn as columns, in this section we
will frequently write them as rows. Subspaces, independence, spanning, and dimension are defined
for rows using matrix operations, just as for columns. If A is an m×n matrix, we define:

Definition 5.10 Column and Row Space of a Matrix

The column space, col A, of A is the subspace of Rm spanned by the columns of A.
The row space, row A, of A is the subspace of Rn spanned by the rows of A.

Much of what we do in this section involves these subspaces. We begin with:

Lemma 5.4.1
Let A and B denote m×n matrices.

1. If A → B by elementary row operations, then row A = row B.

2. If A → B by elementary column operations, then col A = col B.

Proof. We prove (1); the proof of (2) is analogous. It is enough to do it in the case when A → B
by a single row operation. Let R1, R2, . . . , Rm denote the rows of A. The row operation A → B
either interchanges two rows, multiplies a row by a nonzero constant, or adds a multiple of a row
to a different row. We leave the first two cases to the reader. In the last case, suppose that a times
row p is added to row q where p < q. Then the rows of B are R1, . . . , Rp, . . . , Rq +aRp, . . . , Rm,
and Theorem 5.1.1 shows that

span{R1, . . . , Rp, . . . , Rq, . . . , Rm}= span{R1, . . . , Rp, . . . , Rq +aRp, . . . , Rm}

That is, row A = row B.

If A is any matrix, we can carry A → R by elementary row operations where R is a row-echelon
matrix. Hence row A = row R by Lemma 5.4.1; so the first part of the following result is of interest.

Lemma 5.4.2
If R is a row-echelon matrix, then

1. The nonzero rows of R are a basis of row R.

2. The columns of R containing leading ones are a basis of col R.

Proof. The rows of R are independent by Example 5.2.6, and they span row R by definition. This
proves (1).
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Let c j1 , c j2 , . . . , c jr denote the columns of R containing leading 1s. Then {c j1 , c j2 , . . . , c jr}
is independent because the leading 1s are in different rows (and have zeros below and to the left
of them). Let U denote the subspace of all columns in Rm in which the last m− r entries are zero.
Then dim U = r (it is just Rr with extra zeros). Hence the independent set {c j1 , c j2 , . . . , c jr} is a
basis of U by Theorem 5.2.7. Since each c ji is in col R, it follows that col R =U , proving (2).

With Lemma 5.4.2 we can fill a gap in the definition of the rank of a matrix given in Chapter 1.
Let A be any matrix and suppose A is carried to some row-echelon matrix R by row operations.
Note that R is not unique. In Section 1.2 we defined the rank of A, denoted rank A, to be the
number of leading 1s in R, that is the number of nonzero rows of R. The fact that this number does
not depend on the choice of R was not proved in Section 1.2. However part 1 of Lemma 5.4.2 shows
that

rank A = dim ( row A)

and hence that rank A is independent of R.
Lemma 5.4.2 can be used to find bases of subspaces of Rn (written as rows). Here is an example.

Example 5.4.1

Find a basis of U = span{(1, 1, 2, 3), (2, 4, 1, 0), (1, 5, −4, −9)}.

Solution. U is the row space of

 1 1 2 3
2 4 1 0
1 5 −4 −9

. This matrix has row-echelon form 1 1 2 3
0 1 −3

2 −3
0 0 0 0

, so {(1, 1, 2, 3), (0, 1, −3
2 , −3)} is basis of U by Lemma 5.4.2.

Note that {(1, 1, 2, 3), (0, 2, −3, −6)} is another basis that avoids fractions.

Lemmas 5.4.1 and 5.4.2 are enough to prove the following fundamental theorem.

Theorem 5.4.1: Rank Theorem
Let A denote any m×n matrix of rank r. Then

dim (col A) = dim ( row A) = r

Moreover, if A is carried to a row-echelon matrix R by row operations, then

1. The r nonzero rows of R are a basis of row A.

2. If the leading 1s lie in columns j1, j2, . . . , jr of R, then columns j1, j2, . . . , jr of A are
a basis of col A.

Proof. We have row A = row R by Lemma 5.4.1, so (1) follows from Lemma 5.4.2. Moreover,
R = UA for some invertible matrix U by Theorem 2.5.1. Now write A =

[
c1 c2 . . . cn

]
where

c1, c2, . . . , cn are the columns of A. Then

R =UA =U
[

c1 c2 · · · cn
]
=
[

Uc1 Uc2 · · · Ucn
]
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Thus, in the notation of (2), the set B = {Uc j1 , Uc j2 , . . . , Uc jr} is a basis of col R by Lemma 5.4.2.
So, to prove (2) and the fact that dim (col A) = r, it is enough to show that D = {c j1 , c j2 , . . . , c jr}
is a basis of col A. First, D is linearly independent because U is invertible (verify), so we show that,
for each j, column c j is a linear combination of the c ji . But Uc j is column j of R, and so is a linear
combination of the Uc ji , say Uc j = a1Uc j1 +a2Uc j2 + · · ·+arUc jr where each ai is a real number.

Since U is invertible, it follows that c j = a1c j1 + a2c j2 + · · ·+ arc jr and the proof is complete.

Example 5.4.2

Compute the rank of A =

 1 2 2 −1
3 6 5 0
1 2 1 2

 and find bases for row A and col A.

Solution. The reduction of A to row-echelon form is as follows: 1 2 2 −1
3 6 5 0
1 2 1 2

→

 1 2 2 −1
0 0 −1 3
0 0 −1 3

→

 1 2 2 −1
0 0 −1 3
0 0 0 0


Hence rank A = 2, and {

[
1 2 2 −1

]
,
[

0 0 1 −3
]
} is a basis of row A by

Lemma 5.4.2. Since the leading 1s are in columns 1 and 3 of the row-echelon matrix,

Theorem 5.4.1 shows that columns 1 and 3 of A are a basis


 1

3
1

 ,

 2
5
1

 of col A.

Theorem 5.4.1 has several important consequences. The first, Corollary 5.4.1 below, follows
because the rows of A are independent (respectively span row A) if and only if their transposes are
independent (respectively span col A).

Corollary 5.4.1

If A is any matrix, then rank A = rank (AT ).

If A is an m×n matrix, we have col A ⊆ Rm and row A ⊆ Rn. Hence Theorem 5.2.8 shows that
dim (col A)≤ dim (Rm) = m and dim ( row A)≤ dim (Rn) = n. Thus Theorem 5.4.1 gives:

Corollary 5.4.2

If A is an m×n matrix, then rank A ≤ m and rank A ≤ n.

Corollary 5.4.3

rank A = rank (UA) = rank (AV ) whenever U and V are invertible.
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Proof. Lemma 5.4.1 gives rank A = rank (UA). Using this and Corollary 5.4.1 we get

rank (AV ) = rank (AV )T = rank (V T AT ) = rank (AT ) = rank A

The next corollary requires a preliminary lemma.

Lemma 5.4.3
Let A, U , and V be matrices of sizes m×n, p×m, and n×q respectively.

1. col (AV )⊆ col A, with equality if VV ′ = In for some V ′.

2. row (UA)⊆ row A, with equality if U ′U = Im for some U ′.

Proof. For (1), write V =
[
v1, v2, . . . , vq

]
where v j is column j of V . Then we have

AV =
[
Av1, Av2, . . . , Avq

]
, and each Av j is in col A by Definition 2.4. It follows that col (AV ) ⊆

col A. If VV ′ = In, we obtain col A = col [(AV )V ′]⊆ col (AV ) in the same way. This proves (1).
As to (2), we have col

[
(UA)T ]= col (ATUT )⊆ col (AT ) by (1), from which row (UA)⊆ row A.

If U ′U = Im, this is equality as in the proof of (1).

Corollary 5.4.4

If A is m×n and B is n×m, then rank AB ≤ rank A and rank AB ≤ rank B.

Proof. By Lemma 5.4.3, col (AB)⊆ col A and row (BA)⊆ row A, so Theorem 5.4.1 applies.

In Section 5.1 we discussed two other subspaces associated with an m× n matrix A: the null
space null (A) and the image space im (A)

null (A) = {x in Rn | Ax = 0} and im (A) = {Ax | x in Rn}

Using rank, there are simple ways to find bases of these spaces. If A has rank r, we have im (A) =
col (A) by Example 5.1.8, so dim [ im (A)] = dim [col (A)] = r. Hence Theorem 5.4.1 provides a
method of finding a basis of im (A). This is recorded as part (2) of the following theorem.

Theorem 5.4.2
Let A denote an m×n matrix of rank r. Then

1. The n− r basic solutions to the system Ax = 0 provided by the gaussian algorithm are
a basis of null (A), so dim [null (A)] = n− r.

2. Theorem 5.4.1 provides a basis of im (A) = col (A), and dim [ im (A)] = r.

Proof. It remains to prove (1). We already know (Theorem 2.2.1) that null (A) is spanned by the
n− r basic solutions of Ax = 0. Hence using Theorem 5.2.7, it suffices to show that dim [null (A)] =
n− r. So let {x1, . . . , xk} be a basis of null (A), and extend it to a basis {x1, . . . , xk, xk+1, . . . , xn}
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of Rn (by Theorem 5.2.6). It is enough to show that {Axk+1, . . . , Axn} is a basis of im (A); then
n− k = r by the above and so k = n− r as required.

Spanning. Choose Ax in im (A), x in Rn, and write x = a1x1 + · · ·+akxk +ak+1xk+1 + · · ·+anxn
where the ai are in R. Then Ax = ak+1Axk+1 + · · ·+anAxn because {x1, . . . , xk} ⊆ null (A).

Independence. Let tk+1Axk+1+ · · ·+ tnAxn = 0, ti in R. Then tk+1xk+1+ · · ·+ tnxn is in null A, so
tk+1xk+1 + · · ·+ tnxn = t1x1 + · · ·+ tkxk for some t1, . . . , tk in R. But then the independence of the
xi shows that ti = 0 for every i.

Example 5.4.3

If A =

 1 −2 1 1
−1 2 0 1

2 −4 1 0

, find bases of null (A) and im (A), and so find their dimensions.

Solution. If x is in null (A), then Ax = 0, so x is given by solving the system Ax = 0. The
reduction of the augmented matrix to reduced form is 1 −2 1 1 0

−1 2 0 1 0
2 −4 1 0 0

→

 1 −2 0 −1 0
0 0 1 2 0
0 0 0 0 0



Hence r = rank (A) = 2. Here, im (A) = col (A) has basis


 1

−1
2

 ,

 1
0
1

 by

Theorem 5.4.1 because the leading 1s are in columns 1 and 3. In particular,
dim [ im (A)] = 2 = r as in Theorem 5.4.2.
Turning to null (A), we use gaussian elimination. The leading variables are x1 and x3, so the
nonleading variables become parameters: x2 = s and x4 = t. It follows from the reduced
matrix that x1 = 2s+ t and x3 =−2t, so the general solution is

x =


x1
x2
x3
x4

=


2s+ t

s
−2t

t

= sx1 + tx2 where x1 =


2
1
0
0

 , and x2 =


1
0

−2
1

 .

Hence null (A). But x1 and x2 are solutions (basic), so

null (A) = span{x1, x2}

However Theorem 5.4.2 asserts that {x1, x2} is a basis of null (A). (In fact it is easy to
verify directly that {x1, x2} is independent in this case.) In particular,
dim [null (A)] = 2 = n− r, as Theorem 5.4.2 asserts.

Let A be an m×n matrix. Corollary 5.4.2 of Theorem 5.4.1 asserts that rank A ≤ m and rank A ≤
n, and it is natural to ask when these extreme cases arise. If c1, c2, . . . , cn are the columns of A,
Theorem 5.2.2 shows that {c1, c2, . . . , cn} spans Rm if and only if the system Ax = b is consistent
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for every b in Rm, and that {c1, c2, . . . , cn} is independent if and only if Ax = 0, x in Rn, implies
x = 0. The next two useful theorems improve on both these results, and relate them to when the
rank of A is n or m.

Theorem 5.4.3
The following are equivalent for an m×n matrix A:

1. rank A = n.

2. The rows of A span Rn.

3. The columns of A are linearly independent in Rm.

4. The n×n matrix AT A is invertible.

5. CA = In for some n×m matrix C.

6. If Ax = 0, x in Rn, then x = 0.

Proof. (1) ⇒ (2). We have row A ⊆ Rn, and dim ( row A) = n by (1), so row A = Rn by Theo-
rem 5.2.8. This is (2).

(2) ⇒ (3). By (2), row A =Rn, so rank A = n. This means dim (col A) = n. Since the n columns
of A span col A, they are independent by Theorem 5.2.7.

(3) ⇒ (4). If (AT A)x = 0, x in Rn, we show that x = 0 (Theorem 2.4.5). We have

‖Ax‖2 = (Ax)T Ax = xT AT Ax = xT 0 = 0

Hence Ax = 0, so x = 0 by (3) and Theorem 5.2.2.
(4) ⇒ (5). Given (4), take C = (AT A)−1AT .
(5) ⇒ (6). If Ax = 0, then left multiplication by C (from (5)) gives x = 0.
(6) ⇒ (1). Given (6), the columns of A are independent by Theorem 5.2.2. Hence dim (col A)= n,

and (1) follows.

Theorem 5.4.4
The following are equivalent for an m×n matrix A:

1. rank A = m.

2. The columns of A span Rm.

3. The rows of A are linearly independent in Rn.

4. The m×m matrix AAT is invertible.

5. AC = Im for some n×m matrix C.

6. The system Ax = b is consistent for every b in Rm.
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Proof. (1) ⇒ (2). By (1), dim (col A = m, so col A = Rm by Theorem 5.2.8.
(2) ⇒ (3). By (2), col A = Rm, so rank A = m. This means dim ( row A) = m. Since the m rows

of A span row A, they are independent by Theorem 5.2.7.
(3) ⇒ (4). We have rank A = m by (3), so the n×m matrix AT has rank m. Hence applying

Theorem 5.4.3 to AT in place of A shows that (AT )T AT is invertible, proving (4).
(4) ⇒ (5). Given (4), take C = AT (AAT )

−1 in (5).
(5) ⇒ (6). Comparing columns in AC = Im gives Ac j = e j for each j, where c j and e j denote

column j of C and Im respectively. Given b in Rm, write b = ∑
m
j=1 r je j, r j in R. Then Ax = b holds

with x = ∑
m
j=1 r jc j as the reader can verify.

(6) ⇒ (1). Given (6), the columns of A span Rm by Theorem 5.2.2. Thus col A = Rm and (1)
follows.

Example 5.4.4

Show that
[

3 x+ y+ z
x+ y+ z x2 + y2 + z2

]
is invertible if x, y, and z are not all equal.

Solution. The given matrix has the form AT A where A =

 1 x
1 y
1 z

 has independent

columns because x, y, and z are not all equal (verify). Hence Theorem 5.4.3 applies.

Theorem 5.4.3 and Theorem 5.4.4 relate several important properties of an m× n matrix A to
the invertibility of the square, symmetric matrices AT A and AAT . In fact, even if the columns of
A are not independent or do not span Rm, the matrices AT A and AAT are both symmetric and, as
such, have real eigenvalues as we shall see. We return to this in Chapter 7.

Exercises for 5.4

Exercise 5.4.1 In each case find bases for the row
and column spaces of A and determine the rank of
A.


2 −4 6 8
2 −1 3 2
4 −5 9 10
0 −1 1 2

a)


2 −1 1

−2 1 1
4 −2 3

−6 3 0

b)


1 −1 5 −2 2
2 −2 −2 5 1
0 0 −12 9 −3

−1 1 7 −7 1

c)

[
1 2 −1 3

−3 −6 3 −2

]
d)

b.
 2

−1
1

 ,

 0
0
1

 ;




2
−2

4
−6

 ,


1
1
3
0


 ;2
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d.




1
2

−1
3

 ,


0
0
0
1


 ;

{[
1

−3

]
,
[

3
−2

]}
;2

Exercise 5.4.2 In each case find a basis of the
subspace U .

a. U = span{(1, −1, 0, 3), (2, 1, 5, 1), (4, −2, 5, 7)}

b. U = span{(1, −1, 2, 5, 1), (3, 1, 4, 2, 7),
(1, 1, 0, 0, 0), (5, 1, 6, 7, 8)}

c. U = span




1
1
0
0

 ,


0
0
1
1

 ,


1
0
1
0

 ,


0
1
0
1




d.

U = span


 1

5
−6

 ,

 2
6

−8

 ,

 3
7

−10

 ,

 4
8

12



b.




1
1
0
0
0

 ,


0

−2
2
5
1

 ,


0
0
2

−3
6




d.


 1

5
−6

 ,

 0
1

−1

 0
0
1


Exercise 5.4.3

a. Can a 3×4 matrix have independent columns?
Independent rows? Explain.

b. If A is 4× 3 and rank A = 2, can A have in-
dependent columns? Independent rows? Ex-
plain.

c. If A is an m×n matrix and rank A = m, show
that m ≤ n.

d. Can a nonsquare matrix have its rows inde-
pendent and its columns independent? Ex-
plain.

e. Can the null space of a 3×6 matrix have di-
mension 2? Explain.

f. Suppose that A is 5×4 and null (A) = Rx for
some column x 6= 0. Can dim ( im A) = 2?

b. No; no

d. No

f. Otherwise, if A is m × n, we have m =
dim ( row A) = rank A = dim (col A) = n

Exercise 5.4.4 If A is m×n show that

col (A) = {Ax | x in Rn}

Let A =
[

c1 . . . cn
]
. Then col A =

span{c1, . . . , cn} = {x1c1 + · · · + xncn | xi in R} =
{Ax | x in Rn}.

Exercise 5.4.5 If A is m×n and B is n×m, show
that AB = 0 if and only if col B ⊆ null A.

Exercise 5.4.6 Show that the rank does not
change when an elementary row or column opera-
tion is performed on a matrix.

Exercise 5.4.7 In each case find a basis of the null
space of A. Then compute rank A and verify (1) of
Theorem 5.4.2.

a. A =


3 1 1
2 0 1
4 2 1
1 −1 1



b. A =


3 5 5 2 0
1 0 2 2 1
1 1 1 −2 −2

−2 0 −4 −4 −2



b. The basis is




6
0

−4
1
0

 ,


5
0

−3
0
1


 so the di-

mension is 2. Have rank A = 3 and n−3 = 2.

Exercise 5.4.8 Let A = cr where c 6= 0 is a column
in Rm and r 6= 0 is a row in Rn.



5.4. Rank of a Matrix 305

a. Show that col A = span{c} and
row A = span{r}.

b. Find dim (null A).

c. Show that null A = null r.

b. n−1

Exercise 5.4.9 Let A be m × n with columns
c1, c2, . . . , cn.

a. If {c1, . . . , cn} is independent, show null A =
{0}.

b. If null A = {0}, show that {c1, . . . , cn} is in-
dependent.

b. If r1c1 + · · ·+ rncn = 0, let x = [r1, . . . , rn]
T .

Then Cx = r1c1 + · · ·+ rncn = 0, so x is in
null A = 0. Hence each ri = 0.

Exercise 5.4.10 Let A be an n×n matrix.

a. Show that A2 = 0 if and only if col A ⊆ null A.

b. Conclude that if A2 = 0, then rank A ≤ n
2 .

c. Find a matrix A for which col A = null A.

b. Write r = rank A. Then (a) gives r =
dim (col A ≤ dim (null A) = n− r.

Exercise 5.4.11 Let B be m×n and let AB be k×n.
If rank B = rank (AB), show that null B = null (AB).
[Hint: Theorem 5.4.1.]

Exercise 5.4.12 Give a careful argument why
rank (AT ) = rank A.

We have rank (A) = dim [col (A)] and rank (AT ) =
dim [ row (AT )]. Let {c1, c2, . . . , ck} be a basis of
col (A); it suffices to show that {cT

1 , cT
2 , . . . , cT

k } is a

basis of row (AT ). But if t1cT
1 +t2cT

2 + · · ·+tkcT
k = 0, t j

in R, then (taking transposes) t1c1+t2c2+ · · ·+tkck =
0 so each t j = 0. Hence {cT

1 , cT
2 , . . . , cT

k } is inde-
pendent. Given v in row (AT ) then vT is in col (A);
say vT = s1c1 + s2c2 + · · ·+ skck, s j in R: Hence
v = s1cT

1 + s2cT
2 + · · ·+ skcT

k , so {cT
1 , cT

2 , . . . , cT
k }

spans row (AT ), as required.

Exercise 5.4.13 Let A be an m× n matrix with
columns c1, c2, . . . , cn. If rank A = n, show that
{AT c1, AT c2, . . . , AT cn} is a basis of Rn.

Exercise 5.4.14 If A is m×n and b is m×1, show
that b lies in the column space of A if and only if
rank [A b] = rank A.

Exercise 5.4.15

a. Show that Ax = b has a solution if and only
if rank A = rank [A b]. [Hint: Exercises 5.4.12
and 5.4.14.]

b. If Ax = b has no solution, show that
rank [A b] = 1+ rank A.

b. Let {u1, . . . , ur} be a basis of col (A). Then
b is not in col (A), so {u1, . . . , ur, b} is
linearly independent. Show that col [A b] =
span{u1, . . . , ur, b}.

Exercise 5.4.16 Let X be a k×m matrix. If I is
the m×m identity matrix, show that I +XT X is in-

vertible. [Hint: I +XT X = AT A where A =

[
I
X

]
in

block form.]

Exercise 5.4.17 If A is m × n of rank r, show
that A can be factored as A = PQ where P is m× r
with r independent columns, and Q is r × n with

r independent rows. [Hint: Let UAV =

[
Ir 0
0 0

]
by Theorem 2.5.3, and write U−1 =

[
U1 U2
U3 U4

]
and

V−1 =

[
V1 V2
V3 V4

]
in block form, where U1 and V1 are

r× r.]

Exercise 5.4.18

a. Show that if A and B have independent
columns, so does AB.
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b. Show that if A and B have independent rows,
so does AB.

Exercise 5.4.19 A matrix obtained from A by
deleting rows and columns is called a submatrix
of A. If A has an invertible k × k submatrix, show

that rank A ≥ k. [Hint: Show that row and column
operations carry

A →
[

Ik P
0 Q

]
in block form.] Remark: It can be

shown that rank A is the largest integer r such that
A has an invertible r× r submatrix.
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